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In a number of stochastic systems the random forcing is represented as a dichotomous Markov noise. A
common characteristic of these models is that the noise is usually supposed to be independent of the state of
the forced dynamical system. However, there are several situations in which positive or negative feedback exist
between the system and the random driver. This paper investigates a class of systems characterized by feedback
between dichotomous Markov noise and the system’s dynamics. The effect of the feedback is accounted for
through a state dependency in the transition rates of the dichotomous noise. We study noise-induced transitions
in these systems, with special attention to the delicate problem of correctly defining the deterministic counter-
part of the stochastic system. We find that �i� if in the absence of any feedback the dynamical system has a
single deterministic stable point, the deterministic dynamics remain monostable when a negative feedback is
introduced, while they may become bistable in the presence of a positive feedback. �ii� Noise may induce
bistability in the presence of a null or negative feedback. �iii� Bistable deterministic dynamics, induced by the
positive feedback, may be destroyed by the noise, which tends to stabilize the system around a new interme-
diate stable state between those of the deterministic dynamics.
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I. INTRODUCTION

The dichotomous Markov noise �DMN� is a stochastic
process described by a variable, �dn�t�, that can take only two
values, say �1 and �2, with the transition �1→�2 occurring
at rate k1, and �2→�1 at rate k2. In spite of its simple struc-
ture, the dichotomous noise has drawn the attention of a
number of authors �e.g., see the recent review by Bena �1��
for two main reasons. The first reason is that the dichoto-
mous noise is a simple, analytically tractable form of colored
noise; in fact, it is possible to obtain exact analytical solu-
tions for a stochastic differential equation driven by DMN, in
particular in steady state conditions �1–4�. Therefore, the first
reason why the DMN is used pertains to what we here define
as the functional usage of the DMN, i.e., to its function as a
tool to conveniently represent a correlated random forcing.
Thus, in this case �functional usage� the starting point is a
given deterministic system, say dx /dt= f�x�, and DMN is
typically used to investigate the effect of a zero-mean corre-
lated random driver in this system. Beside its analytical trac-
tability, generality is another property justifying the func-
tional usage of DMN: in fact, both Poisson noise and
Gaussian noise can be recovered from the dichotomous noise
by taking suitable limits �2�. The second reason behind the
success of the DMN is that a broad class of systems that
randomly switch between two dynamical states can be rep-
resented through the use of the DMN. This approach is what
we will denote here as the mechanistic usage of the DMN,
wherein the DMN is used to represent a dynamical behavior,
i.e., the mechanisms of random switching between two
states.

This distinction in the manner of how the DMN is used
may have important consequences, in particular when noise-
induced transitions in systems driven by DMN are consid-
ered. Noise-induced transitions are associated with the emer-
gence of new ordered states as the noise intensity �i.e., the
noise variance� exceeds a critical threshold �3�. The random-
ness of an external driver is then able to profoundly affect
the dynamical properties of the system, by inducing bifurca-
tions that do not exist in the underlying deterministic dynam-
ics. To correctly identify noise-induced transitions one
should then be able to define the deterministic counterpart of
the dynamics, which indeed depends on the way the DMN is
used �functional or mechanistic interpretation�. One of the
aims of the present paper is to clarify this point, which is not
fully manifest in the literature.

The other aim of the paper is to extend some of the ex-
isting results on the analysis of dynamical systems forced by
dichotomous noise, which exhibit noise-induced transitions
�3–5�: in fact, previous studies have concentrated on the
study of the interaction of multiplicative noise with nonlinear
dynamics, and in particular on the case in which the multi-
plicative noise can be factorized, i.e., expressed as the
byproduct of a noise term, �dn, with a function of the state
variable. Here we show that noise-induced transitions may
also emerge from a state dependency of the noise parameters,
i.e., from the dependency of the rates k1 and k2 on the state
variable. The topic is relevant, not only from the speculative
viewpoint. In fact, most natural systems are forced by sto-
chastic environmental fluctuations, which determine the ran-
dom alternation of conditions favorable for the growth or the
decay of indicators of the health of the system �e.g., total
biomass, vegetation cover, or biodiversity�. In a number of
cases the random environmental fluctuations depend on these
state variables. In fact, positive or negative feedback �6� are
commonly found between ecosystem dynamics and their*Corresponding author. francesco.laio@polito.it
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limiting resources �e.g., �7–10�� or disturbance regime �e.g.,
�11–13��. Although the need for the study of a state-
dependent version of the dichotomous noise has already been
stressed elsewhere �1,14,15�, a full exploration of the prop-
erties of this process is still lacking.

In the following section we will formulate a framework
for the study of univariate systems forced by state-dependent
dichotomous Markov noise under the two possible interpre-
tations of mechanistic and functional DMN. Noise induced
transitions for this class of processes are then studied in Sec.
III. A simple example of dynamical system driven by di-
chotomous noise will show in Sec. IV how the feedback
strongly influences the stochastic dynamics, suggesting that
the state dependency of the dichotomous noise should be in
general accounted for.

II. MODELING FRAMEWORK

This section is devoted to defining our modeling frame-
work for investigating the interactions between noise and
feedback in dynamical systems. We first clarify in Sec. II A
the differences between the mechanistic and functional usage
of the DMN in the absence of the feedback, and then intro-
duce the state dependency in Sec. II B.

A. Mechanistic vs functional interpretation of the DMN

We start by considering the mechanistic approach, which
stems from a class of processes characterized by the follow-
ing three components: �i� the dynamical system, whose state
is expressed by one state variable x�t� �where t is time�; �ii� a
random driver q, accounting for the uncertainty affecting the
system; �iii� a threshold value s of q, marking the transition
between conditions favorable to the growth or decay of x.
For example, the variable x could represent the vegetation
biomass in semiarid environments �16�, or the riparian veg-
etation along a river transect �17�; correspondingly, q could
represent the random rainfall fluctuations that determine the
occurrence of water-limited conditions or of flooded or un-
flooded states, respectively. Thus the stochastic driver deter-
mines the random alternation between stressed and un-
stressed conditions for the ecosystem �e.g., �16,17��.

The two alternating dynamics of x involve growth and
decay and can be modeled by two functions, f1�x� and f2�x�,
respectively,

dx

dt
= � f1�x� if q � s �1a�

f2�x� if q � s �1b� �
with f1�x��0 and f2�x��0. Equations �1� are written assum-
ing that q is a resource, in that values of q exceeding the
threshold are associated with unstressed conditions �in the
sense that x grows�. However, the general results presented
in this paper do not change when the random driver is a
stressor. In this case the conditions in Eqs. �1� are reversed,
i.e., growth or decay occur when q is below or above the
threshold, respectively.

The class of processes defined in the previous paragraphs
can be conveniently represented through a suitable dichoto-
mic Markov process, which naturally leads to our mechanis-

tic usage of the DMN. The driving process is random and
switches between two possible states: “success” �or “no
stress”�, when q is above the threshold, or “failure” �or
“stress”�, when q is below the threshold �see Fig. 1, continu-
ous line�. This is by definition a dichotomic process. If one
further supposes that q, which is discrete in time, changes
randomly at each time step �i.e., it is uncorrelated�, the driv-
ing noise is the outcome of a Bernoulli trial with probability
of success k2=1− PQ�s�, where PQ�s� is the cumulative prob-
ability distribution of q, evaluated in q=s. The residence
time in the “above threshold” state is then an integer number
n1 with a geometric probability distribution, pN1

�n1�
=k2

n1−1�1−k2�, n1=1 , . . . ,�, with average �n1�= 1
1−k2

. Analo-
gously, the residence time in the “below threshold” state is
distributed as pN2

�n2�= �1−k2�n2−1k2, n2=1 , . . . ,�, with aver-
age �n2�= 1

k2
. The dichotomic Markov noise is obtained as the

continuous time approximation of this driving process. In
fact, in continuous time the residence time in each state be-
comes exponentially distributed �the exponential distribution
is the continuous counterpart of the geometric distribution�,
which is a basic property of the DMN �see, for example, �1��.

The overall dynamics of the variable x can then be ex-
pressed by a stochastic differential equation forced by di-
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FIG. 1. Example of the relations between the external forcing q
�panel �a�, gray bars�, the threshold s �panel �a�, continuous and
dashed lines�, the corresponding DMN �panel �b��, and the resulting
x dynamics �panel �c��. Continuous and dashed lines correspond to
no feedback and positive feedback between x and s, respectively.
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chotomous Markov noise, �dn�t�, assuming �constant� values,
�1 and �2

dx

dt
= f�x� + g�x��dn�t� �2�

with

f�x� = −
�2f1�x� − �1f2�x�

�1 − �2
, g�x� =

f1�x� − f2�x�
�1 − �2

. �3�

The transition rates are defined by k1= PQ�s� and k2=1−k1
=1− PQ�s�. As for the values of �1 and �2, in the mechanis-
tic approach the DMN is used as a tool to randomly switch
between f1�x� and f2�x�. The only relevant characteristics of
the DMN are in this case the switching rates k1 and k2, while
all other noise characteristics, included its mean, �1k2
+�2k1, and variance, −�1�2, are not relevant to the represen-
tation of the x dynamics. In fact, in this case x switches
between two dynamics �modeled by f1�x� and f2�x�� that are
independent of �1 and �2. As a consequence, �1 and �2 may
assume arbitrary values.

Under the functional interpretation of the DMN, in con-
trast, the ingredients of the dynamical system are �i� a dy-
namical system that deterministically evolves following the
differential equation dx

dt = f�x�; and �ii� a random colored forc-
ing ��t� which acts on the time derivative of x, modulated by
a function g�x� of the state variable. The time evolution of
the system is therefore expressed by the stochastic differen-
tial equation dx

dt = f�x�+g�x���t�. The functional usage of the
DMN consists in approximating ��t� as a DMN, i.e., ��t�
=�dn�t�. In this case neither of the values of k1, k2, �1, and �2
is arbitrary and these parameters need to be determined by
adapting the DMN to the characteristics of the driving noise
�i.e., for example, by matching the mean, variance, skew-
ness, and correlation scale�. Moreover, the functions f�x� and
g�x� are in this case defined a priori, while f1�x� and f2�x�
change with changing noise characteristics since they are ob-
tained by inverting Eqs. �3�. These differences between the
functional and mechanistic usage of the noise may be rel-
evant in particular when dealing with noise-induced transi-
tions �see Sec. III�.

B. Feedback: Dichotomous state-dependent noise

The other element of novelty in the dynamics investigated
in this paper arises from the feedback between the state x of
the system and the random driver. Under the mechanistic
interpretation this feedback translates into a dependency of q
on x, or of the threshold value s on x �see Fig. 1, dashed
lines�. We introduce the feedback by assuming that either
pQ�q� or s �or both� depend on the state of the system,
namely pQ�q�= pQ�q 	x� or s=s�x�. This implies that also the
rates of the DMN depend on x, k1�x�=
0

s pQ�q 	x�dq or
k1�x�=
0

s�x�pQ�q�dq, and k2�x�=1−k1�x�. Under the func-
tional interpretation, the feedback may produce a state de-
pendency in any of the parameters �k1, k2, �1, and �2� of the
DMN. However, an eventual x dependency of �1 and/or �2
can be accounted for through a suitable modification of the
g�x� function, while the x dependency of k1 and k2 intrinsi-

cally modifies the dynamical system �the multiplicative noise
cannot be factorized�. The presence of the state dependency
in k1 and k2 profoundly affects the x dynamics �Fig. 1�c��,
due to the modification of the distribution of the residence
times in the states �1 and �2. In fact, this distribution is not
exponential as with the standard DMN, consistently with a
general property of processes with state-dependent rates
�e.g., �18,19��.

The case of a feedback inducing state-dependent thresh-
olds is widespread in environmental systems. For example,
dryland vegetation is typically limited by soil moisture; thus
random rainfall inputs affect vegetation through the dynam-
ics of soil moisture. Vegetation growth is sustainable only
when soil moisture exceeds a certain threshold, otherwise a
mortality induced decrease in �live� vegetation biomass oc-
curs. As a result, rainfall inputs determine the switching be-
tween stressed and unstressed conditions. The existence of a
positive feedback between soil moisture and vegetation
makes the switching state dependent: in arid and semiarid
environments moister near-surface soils have been consis-
tently found beneath vegetation canopies than in the sur-
rounding bare soil areas �20–22� presumably due to the
lower evaporation losses and higher soil infiltration capacity
in the subcanopy soils. Through this feedback dryland plants
tend to create more favorable conditions for their own sur-
vival; thus growth requires less rainwater on well vegetated
soils than on soils with only a thin sparse canopy cover. This
fact translates into a state dependency in the threshold s of
the random driver q �precipitation�.

Another example is represented by the dynamics of
woody vegetation in semiarid, fire-prone environments. In
this case the encroachment of woody plants has been found
to be limited by fires �e.g., �11,23��, which, in turn, depend
both on ignition and on the presence of grass fuel. In the
study of the dynamics of woody vegetation in savannas fire
ignition is the random external forcing. Ignition does not act
directly on woody plants, in that its effect is mediated by
grass fuel availability, which, in turn, is inversely related to
woody plant biomass x. Relatively high values of x corre-
spond to a system dominated by woody vegetation, where
herbaceous vegetation �i.e., fuel load� is present only in lim-
ited amounts. In this system, with the potential for random
ignition �e.g., from lightning or land use� being the same, a
woodland savanna is less prone to fires than an open savanna
with a relatively low tree density. Thus a positive feedback
exists between vegetation and the fire pressure, and the dy-
namics of woody plant biomass can be modeled by Eqs. �1�
with state-dependent threshold s=s�x�.

To assess the impact of the feedback on the dynamics of
the system we will investigate the properties of the pdf of x
obtained as solution of the stochastic differential equation �2�
with state-dependent parameters. The steady state solution
reads �14�

pX�x� = C� 1

f1�x�
−

1

f2�x�
�exp
− �

x
� k1�x��

f1�x��
+

k2�x��
f2�x��

�dx��
�4�

with C being a normalization constant calculated by impos-
ing that the integral of pX�x� in the domain of definition of x
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is equal to 1. The zeros of f1�x� and f2�x� are the natural
boundaries for the dynamics, and represent the limits of the x
domain �see also �1��. An alternative representation of the

probability density function, which is of interest under the
functional interpretation of the DMN, is obtained by using
Eq. �3�:

pX�x� =

Cg�x�exp�− �
x
� k1�x��

f�x�� + �1g�x��
+

k2�x��
f�x�� + �2g�x��

�dx��
�f�x� + �1g�x���f�x� + �2g�x��

. �5�

In the following section we will use Eqs. �4� and �5� to
investigate the effect of stochastic forcing and feedback on
the dynamics expressed by Eqs. �1�. Before doing that, we
consider the limiting behavior of the steady state pdf of x
when the correlation time of noise tends to zero. This applies
only in the case when the DMN is used as a simple form of
colored noise to perturb the deterministic dynamics dx /dt
= f�x� �i.e., functional interpretation�; in the reverse case
�mechanistic interpretation� the underlying dynamics are in-
trinsically dichotomic �i.e., the process randomly switches
between two alternative dynamics, dx /dt= f1,2�x��, and it
would be pointless to artificially distort the noise for study-
ing its limiting properties. White shot noise can be obtained
as a limit of the dichotomous noise �2� by taking

�1 = �k1, �2 = 0, k1 → �, k2 = � , �6�

where � and � are the mean frequency and the mean height
of the shot noise pulses, respectively. It is interesting to ob-
serve that when the same limits �6� are taken in the case of
state-dependent dichotomous noise, the x dependency of k1 is
transferred to �=��x� �e.g., if k1�x�=k1h�x�, with h�x� being
a generic function of x, then k1→� implies ��x�= �

h�x� �,
while the state dependency of k2�x� translates into a state
dependency of �=��x�=k2�x�.

The steady state distribution of x using the Stratonovich
integration rule �which naturally arises when taking the limit
from a correlated to a white noise; see �2�� is then obtained
as a limit of the dichotomous noise using the �state-
dependent� parameter values �6� in Eq. �5�,

psn�x� = C
1

f�x�
exp
− �

x

f�x�� + ��x����x��g�x��
f�x����x��g�x��

dx��
�7�

�see also �24��. Note that ��x� always appears, in Eq. �7�,
multiplied by g�x�: this implies that the state dependency in
k1�x� is simply translated into a modification of the g�x�
function by defining �ḡ�x�=��x�g�x�. This component of the
state dependent noise therefore reduces to a standard multi-
plicative noise, while a genuine state dependency remains in
��x�. In other words, by taking the limits in Eq. �6� from Eq.
�2�, one obtains the Langevin equation dx

dt = f�x�+ ḡ�x��sn,
where �sn is a shot noise process with state-dependent rate
��x�.

It has also been noted �e.g., �2�� that white Gaussian noise
can be obtained as the limit of the dichotomous Markov
noise with

�1 = − �2 = �2Dk, k1 = k2 = k → � , �8�

where D is the intensity of the noise. In the case of a process
x�t� forced by state dependent dichotomous noise, the state-
dependency translates into an x-dependent noise intensity,
D=D�x�. The corresponding steady state pdf is obtained by
setting the parameter values �8� in Eq. �5�,

pgn�x� = C
1

�D�x�g�x�
exp
�x f�x��

D�x��g2�x��
dx�� . �9�

As in the case of ��x�, one has that the square root of D�x�
always appears, in Eq. �7�, multiplied by g�x�, so that the
state-dependent noise reduces to a standard multiplicative
noise with �Dḡ�x�=�D�x�g�x�: in fact, the Langevin equa-
tion corresponding to Eq. �2� is dx

dt = f�x�+ ḡ�x��gn, where �sn
is a zero-average Gaussian noise.

III. NOISE-INDUCED TRANSITIONS

In the last few decades the role of noise in stochastic
systems has been investigated in relation to its ability to
induce new ordered states in dynamical systems. Structural
changes in the �stable� states of the system associated with
changes in noise intensity are known as noise-induced tran-
sitions �3�. A number of studies �3–5� have demonstrated a
very counterintuitive effect of noise, i.e., its ability to lead to
qualitative changes in the preferential states of a system with
respect to those of the underlying deterministic dynamics.
The first step towards the identification of noise-induced
transitions is therefore the recognition of the correct deter-
ministic counterpart of the dynamics, which can be tricky
with the DMN, due to the two different possible interpreta-
tions of processes driven by DMN. When the functional in-
terpretation is adopted, the deterministic counterpart is easily
found by setting �dm�t�=0 in Eq. �2�. In this case the deter-
ministic steady states xst are the zeroes of f�x�, f�xst�=0.

Under the mechanistic interpretation the picture is some-
what more complicated, and the presence of the feedback
further affects the deterministic dynamics �in terms of sta-
tionary states�. The underlying deterministic dynamics are
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again obtained by turning to zero the noise variance. If we
decrease the variance of the driving force q while maintain-
ing constant its mean q* in the zero-variance limit, q be-
comes a constant deterministic value, q=q*. We can distin-
guish the three cases of �i� no feedback between x and s, �ii�
positive feedback �larger x values imply smaller s values�,
and �iii� negative feedback �larger x values imply larger s
values�.

�i� When there is no feedback, the deterministic stationary
state is determined by the position of q* relative to s: if q*
�s, the �constant� resources are abundant enough to sustain
the growth of x expressed by Eq. �1a�; the deterministic
steady state xst,1 is in this case determined by setting
f1�xst,1�=0. In the reverse case �q*�s� the available re-
sources are scarce, and the dynamics are expressed by Eq.
�1b�. In this case the deterministic steady state xst,2 is found
by setting f2�xst,2�=0.

�ii� In the case of a positive feedback, the threshold s is a
decreasing function of x. In these conditions the determinis-
tic counterpart of the stochastic dynamics depends on the
relation between s�x� and q*. We first define the maximum
and minimum possible threshold values by setting in s�x� the
relevant domain boundaries, that are xst,2 �minimum� and xst,1
�maximum�, as defined above: the two values s1=s�xst,1�
�minimum� and s2=s�xst,2� �maximum� are obtained. If now
q*�s1 the deterministic dynamics monotonically decrease,
converging to the stable state xst,2. Analogously, if q*�s2 the
system persists in the unstressed state, and the deterministic
stable state is xst,1. The most interesting situation is the one
when s2�q*�s1. In this case the deterministic system is
bistable: if the threshold value associated with the initial con-
dition x0 is smaller than q* �i.e., s�x0��q*�, the dynamics of
x exhibit a deterministic growth with rate determined by
f1�x�. As x grows, s�x� decreases and the system persists in
the growth conditions, thereby converging to the steady state
xst,1. Conversely, if the system is initially in decay �or
“stressed”� conditions �i.e., s�x0��q*�, x decreases with rate
f2�x�, s�x� increases, and x tends to the steady state xst,2.

�iii� In the presence of a negative feedback s�x� increases
with x. Also in this case the two limiting threshold values
may be defined as s1=s�xst,1� and s2=s�xst,2�, with the differ-
ence that now s1 is the maximum and s2 the minimum value.
The deterministic states are then xst,1 if q*�s1, and xst,2 if
q*�s2. Again, the most interesting dynamics are found
when s1�q*�s2: if the system is initially in the growth state
�i.e., s�x0��q*�, x increases �hence s�x� also increases� until
x reaches the value x*, with s�x*�=q*. In these conditions the
system is stable: in fact, if x exceeds x*, the state variable, x
decreases with rate f2�x� because s�x*��q*. Vice versa, if
the system is initially in the stressed �or decay� state, x de-
creases until it reaches x* �from above�. The stable state of
the deterministic system is then x*.

Once the deterministic counterpart of the dynamics has
been identified, it is possible to investigate how noise modi-
fies the stable states of the system. To this end, we analyze
the modes and antimodes xm of the pdf of the process x�t�
forced by state-dependent dichotomous noise. These modes

can be obtained by setting equal to zero the first-order de-
rivative of Eq. �4� or Eq. �5�, depending on the interpretation
adopted for the DMN. In the functional interpretation, the
modes and antimodes are found from the equation

f�xm� + 	c�1�2g�xm�g��xm� + 	c��1 + �2�f��xm�g�xm�

+ 	c
2f�xm�f��xm� −
f2�xm�g��xm�

g�xm� �
+ g�xm�	c��1k2�x� + �2k1�x�� = 0, �10�

where	c= 1
k1�x�+k2�x� , g��xm�= 	 dg�x�

dx 	x=xm
and f��xm�= 	 df�x�

dx 	x=xm
.

The impact of the noise properties on the shape of the pdf
clearly appears from Eq. �10�. The first four terms in Eq. �10�
exist also when the dichotomous noise is state independent
�3�. In particular, the first term is independent of the noise
parameters and remains even when the noise term in Eq. �2�
is turned off. In these conditions the modes and antimodes of
p�x� coincide with the stable states of the underlying deter-
ministic dynamics, in that they are given by the condition
f�xm�=0; the second term expresses the effect of the multi-
plicative nature of the noise �i.e., when g�x��const�; the
third term results from the asymmetry of the noise �i.e., �1
�−�2�, while the fourth term is due to the noise correlation.
When the noise is state dependent, the fifth term appears in
Eq. �10�. This term contributes to the emergence of differ-
ences in the stable states �modes� between the stochastic and
deterministic dynamics. Notice that when the transition rates
are constant �i.e., the noise parameters do not depend on x�
the fifth term is zero if the noise is taken, as it is usually
done, with a null average value, �1k2+�2k1=0.

If the mechanistic interpretation is adopted, it is conve-
nient to write Eq. �10� in terms of the functions f1�x� and
f2�x�,

f1
2�xm�f2��xm� − f2

2�xm�f1��xm�
f2�xm� − f1�xm�

− k1�xm�f2�xm� − k2�xm�f1�xm�

= 0, �11�

where f1��xm�= 	
df1�x�

dx 	x=xm
and f2��xm�= 	

df2�x�
dx 	x=xm

. It is clear
from Eq. �11� that the stable points of the noisy dynamics xm
can be very different from their deterministic counterparts,
xst,1 and xst,2. The role of the state dependency in modifying
the stable states is also expressed by the presence of the
terms k1�xm� and k2�xm� in Eq. �11�. More precise indications
on the occurrence of noise-induced transitions in systems
driven by DMN �under the mechanistic interpretation� are
provided in the following section.

IV. EXAMPLE

To demonstrate the possible impact of the feedback be-
tween noise and the dynamical system, we consider the
simple case in which the alternating processes of growth and
decay are expressed by two linear functions,

f1�x� = ��1 − x�, f2�x� = − �x , �12�

where ��0 determines the rates of growth and decay. The
stationary states, xst,1=1 and xst,2=0, are also the boundaries
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of the dynamics. We also assume a linear dependence of s on
x, s�x�=s0+bx, and a logistic distribution to represent the
variability of the resource q, PQ�q�= �1+e−�q−q

*
�/
�−1, where


 is a scale parameter. The mean and the standard deviation
of the distribution are q* and �

�3

, respectively. The choice of

a linear dependence of s on x and of the use of the logistic
distribution are aimed at simplifying the mathematical treat-
ment of the problem, but other choices �i.e., other monotonic
forms of the s�x� function, or other probability distributions�
would not qualitatively change the results of this section.
Under the above assumptions, the transition rates are found
as k1�x�=1−k2�x�= �1+e−�s0−q

*
+bx�/
�−1. The corresponding

steady-state probability density function from Eq. �4� reads

pX�x� = C1x�1/��−1�1 − x�−1

�exp
−
1

�2�
x

dy

y�1 − y��1 + e−�s0−q
*

+by�/
�
�

�13�

with C1 being the normalization constant calculated by im-
posing that the integral of pX�x� in the domain �0,1� is equal
to 1.

Figure 2 summarizes the behavior of p�x� across the pa-
rameter plane �
 ,�� for the case of no feedback �b=0, Fig.
2�a��, positive feedback �b�0, Fig. 2�b��, or negative feed-
back �b�0, Fig. 2�c��. The case with b=0 �Fig. 2�a�� refers
to a situation where q*�s0, which implies that the determin-
istic stable state is xst=0. For small noise intensities, i.e., for
small 
 values, the probability distribution is L shaped, i.e.,
the most probable state is x=0. For increasing 
 values two
different kinds of noise-induced transitions occur: if � is
small, i.e., the systems responds slowly to the external forc-
ing, relatively to the rate of switching of the DMN noise, a
new mode appears at xm=

k1−�

1−� ; if � is relatively large a bi-
furcation occurs, i.e., the distribution becomes U shaped,
with two stable states in x=0 and x=1. The two curves in
Fig. 2�a�, marking the separation among the three regimes,
are found by considering the behavior of the pdf at the ex-
tremes of the domain, and have equations �=k1

= �1+e−�s0−q
*

�/
�−1 and �=k2=1−k1.
Figure 2�b� shows the case with a positive feedback

�b�0�. For simplicity, we take b=2�q*−s0�, which implies
that the distribution is symmetrical with respect to x=0.5 for
any value of the parameters. The distribution is U shaped for
low noise intensities, as expected from the bistable behavior
of the deterministic counterpart of the dynamics. With in-
creasing values of 
, a first transition occurs, for ��0.5
+ b

8
 , with two other modes appearing and the distribution
assuming an M shape. If 
 is further increased, and �

�k1�x=1�=k2�x=0�= �1+e�s0−q
*

�/
�−1, a second transition
occurs with a new stationary state in xm=0.5. The stochastic
forcing therefore stabilizes the system around a new statisti-
cally stable state. This state is clearly noise induced, in that it
does not exist in the deterministic counterpart of the process.
The ability of noise to turn a bistable deterministic system
into a stochastic process with only one stable state �com-

prised between the two stable deterministic states� is known
as “noise-induced stability” �16,25,26�.

We finally turn to the case with a negative feedback
�b�0, Fig. 2�c��. We take again b=2�q*−s0� to have a sym-
metrical distribution. For low values of 
 the distribution has
a single mode in xm=0.5, which corresponds to the determin-
istic stable state. For increasing noise intensity, the distribu-
tion becomes first W shaped, for ��k1�x=1�=k2�x=0�
= �1+e�s0−q

*
�/
�−1, and then U shaped, for ��0.5+ b

8
 . This is
a clear example of purely noise-induced bistability, because
bistability does not appear in the corresponding deterministic
dynamics.
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FIG. 2. Shapes of the probability distributions of x as a function
of the parameters 
 and �. Panel �a� refers to a case with no feed-
back �b=0, s0=1.1, q*=1�, panel �b� with positive feedback
�b=−0.5, s0=1.25, q*=1�, and panel �c� with negative feedback
�b=0.5, s0=0.75, q*=1�.
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V. CONCLUSIONS

This paper has investigated the effect of �state-dependent�
dichotomous Markov noise on a dynamical system. It is well
known that noise can induce bistable behavior in systems
that do not display any bistable dynamics in the absence of
the random driver. Thus noise does not merely induce ran-
dom fluctuations of the dynamics about its stable states;
rather, it creates order by determining the number of stable
and unstable states. This qualitative difference between the
properties of the stochastic and deterministic dynamics has
been usually ascribed to the multiplicative character of noise
and to its correlation �1,4�. In this paper we have shown that
also state dependency can play a role. This state dependency
corresponds to a particular form of multiplicative noise that
cannot be factorized, i.e., that cannot be expressed as a
byproduct of a function of x and �dn. The state dependency
may account for possible positive or negative feedback be-
tween the random driver and the state of the system. It is
found that �i� if the dynamical system has a single determin-
istic stable point in the absence of the feedback, the deter-
ministic dynamics may become bistable when a positive
feedback is introduced. In fact, the positive feedback tends to

reduce the rate of switching between the growth and decay
states. As a result, the system remains for a longer fraction of
time close to the boundaries of the domain, leading to the
emergence of U-shaped bimodal distributions. Vice versa, a
negative feedback tends to stabilize the system around an
intermediate statistically stable state. �ii� Noise may induce
bistability in the underlying deterministic dynamics in the
presence of a null or negative feedback. �iii� Bistable deter-
ministic dynamics, induced by the positive feedback, may be
destroyed by the noise, which tends to stabilize the system
around a new intermediate stable state between those of the
deterministic dynamics �noise-induced stability�. Due to the
variety of behaviors they can induce, the interactions be-
tween the random forcing and the positive and negative feed-
back need to be adequately accounted for, since they have
been shown to have a strong influence on the system
dynamics.
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